DETERMINATION OF CRITICAL PATTERN OF 60 METER SHIP CONSTRUCTION PROJECT USING PRECEDENCE DIAGRAM METHOD (PDM)

I Nengah Putra APRIYANTO^{*}, Suyono THAMRIN^{*}, Edi SUHARDONO^{*}, Beny RUDIAWAN^{*}, Arica Dwi SUSANTO^{**}

*Indonesia Defense University Sentul, Sukahati, Citeureup, Bogor, West Java, Indonesia 16810 **Indonesian Naval Technology College, STTAL. Bumimoro-Morokrembangan, Surabaya 60187, Indonesia

ABSTRACT: PT. XYZ in Surabaya is engaged in the production of commercial ships, providing ship repair and maintenance services as well as general engineering with specifications based on orders. Along with the development of the technology industry, ship production requires every shipyard to evaluate the system used. The time delay is the problem of building a 60 meter commercial ship. The Precedence Diagram Method (PDM) is a method for scheduling project time and showing critical trajectories of project activities. The results showed that in the project scheduling, there are 13 activities that have a zero value or critical activity which are activities 1, 2, 3, 4, 5, 7, 9, 15, 16, 20, 22, 23, 26, 27, 28 So that it needs more strict control and supervision from the contractor in carrying out the activities of the 60 meter commercial ship building project activities for each activity/activity so that it does not experience delays and the project can be completed on time.

Keywords: Controlling, Planning, Critical trajectories, PDM.

1. INTRODUCTION

PT. XYZ in Surabaya is engaged in the production of commercial vessels, providing ship repair and maintenance services as well as general engineering with specifications based on orders (Silvianita, 2018).

Along with the development of the technology industry, ship production requires every shipyard to evaluate the system used. The new ship building project is required to work fast according to the schedule. Poor performance, low quality, and cost overruns often occur in a project (Arica Dwi Susanto, 2018).

The literature used in this paper were obtained to support the research. These literature includes paper titled A fuzzy pert approach to evaluate plant construction project scheduling risk under uncertain resources capacity (R.Lin, 2009).

Earned Value Management Systems: Challenges and Future Direction (Wilson, 2013). CPM, PERT and Project Management With Fuzzy Logic Technique and Implementation On A Business (Mazlum, 2015). Integration of Building Information Modeling and Critical Path Method Schedules to Simulate the Impact of Temperature and Humidity at the Project Level (Shan, 2014). Comparative Study of Management Operation System Techniques (MOST) and CPM in Construction Scheduling (Shailla. 2014). Extension of Time Determination in Construction Projects in Nigeria: The Critical Path Method (Andawei, 2014). Critical path analysis for the management of fractured neckof femur (Balla, 1995). The Critical Path Method In Estimating Project Duration (Nafkha, 2016). Critical Path Analysis for New Product Planning (Wong, 1964). Measuring the Actual Energy Cost Performance of Green Buildings: A Test of the Earned Value Management Approach (Dwaikat, 2016). Cost Control and Performance Review of Software Projects by Using the Earned Value Management (Alecu, 2014). Critical Path Method in Designing Feasible **Solutions** (Agarwal, 2013). Traditional Critical Path Method versus Critical Chain Project Management: A Comparative View (M, 2015). Project Planning And Control With Pert And Cpm

(K.K.Khandelwal, 2002). Project Planning And Scheduling Using PERT And CPM Techniques With Linear Programming: Case Study (Agyei, 2015). Fast Missile Boat Project Planning using CPM and What If Analysis Method (Silvianita, 2018). CPM Schedule Summarizing Function of the Beeline Diagram Method (Kim, 2012). Earned value method as a tool for project control (Czarnigowska, 2008). The Factors Affecting The Methods of Construction Projects Scheduling: An State of The Art and Overview (Fatemeh Nouban, 2017). Contruction Project Scheduling with Time, Cost and Material Restrictions Using Fuzzy Mathematical Models and Critical Path Method (Daniel Castro-Lacouture, 2009). Planning and Monitoring of industrial punch development processes (Y. Arslan, 2017)

PDM is a network that is generally in the form of a rectangle, while the arrow is only as a guide to the relations of the activities in question. The activity relationship shows the relationship between activities with one line from the previous node to the next node.

This Paper is organized as follows. Section 2 review about the basic ship theory. Section 3 gives result and section 4 discussion of research. Finally, in section 5 present conclusion this paper.

2. MATERIALS AND METHODS

2.1. Technical Concept

In determining the exact duration factors:

1. Volume of work

2. The condition in project fields

3. Weather conditions

4. Resources conditions (labor, materials, equipment)

5. Experiences on previous project (similar project)

2.2. Project Time Management

There are three stages to be performed in project management:

1. Planning Process

Planning process includes the setting of goals, defining projects and forming team organizations. Regarding the capability in working on several projects at once (mostly in large companies), an effective way to assign labors and physical resources is through the project organization. The project organization is led by a project manager who coordinates activities project with other departments and reports to top management.

2. Scheduling

Scheduling is the link between labor, money, and materials used in a project. Project scheduling involves specifying the duration of project activities to be completed, raw materials, labor and time required for each activity. The popular approach used is the Gantt Chart or the Bar Chart Method. Other project scheduling methods are PERT (Project Evaluation and Review Technique) and CPM (Critical Path Method).

3. Controlling

Project controls include control over resources, cost, quality and budget. Project control is also used to revise the project plan and allow to change/shift resources to a needed places (rearranging) so that the time and cost can be appropriate. Project control involves strict supervision of resources, cost, quality and budget. Control also means the use of feedback loops to revise the project plan and resource arrangements where needed.

2.3. Network Component

There are two approaches to describe the project network: activity on node - AON and activity on arrow (AOA). At the AON convention, the point indicates the activity, whereas at the AOA, the arrow indicates the activity.

2.4. Precedence Diagram Method (PDM)

Precedence Diagram Method is a networking method that is included in the classification of AON (Activity On Node). In this method, the activity is written in a node that is generally rectangular, while the arrows as a pointer relationship between the activities concerned. Thus the dummy which is an important sign to indicate the dependence relationship, is not required in PDM.

Vol. 10, Issue 2 (19)/2019

The precedence method diagram can be described as four relations of activity/logic, Each node has two ends, namely the beginning or beginning = (S) and the end or end = (F) that is (Tan, 1998):

In the precedence diagram method, the existence of four relations of activity/logic can be described. Each node has two ends namely the beginning/starting tip = (S) and end/ finish tip = (F) (Tan, 1998):

1. Activity relation of *Start-to-start* (SS): When A starts, B can be started.

2. Activity Relation of *Start-to-finish* (SF): When A starts, B can be finished.

3. Activity Relation *Finish-to-Start* (FS): When A finish, B can be started.

4. Activity Relation *Finish-to-finish* (FF): When A finish, B can be finished.

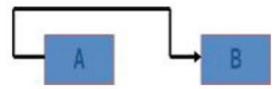


Fig. 1 Activity Relation of Start-to-Start (SS)

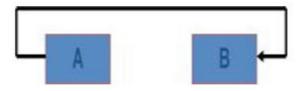


Fig. 2 Activity Relation of Start-to-Finish (SF)

Fig. 3 Activity Relation of Finish-to-Start (FS)

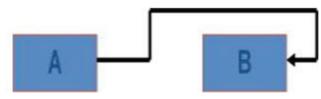


Fig. 4 Activity Relation of Finish-to-Finish (FF)

Vol. 10, Issue 2 (19)/2019

2.5. Method of Research

Analysis of this research data are as follows:

Calculations was performed using excel software whose results can handle planning an activity, organizing and controlling time and costs that convert input data into an output data according to purpose, then the overall time of building a 60 meter commercial ship can b e known.

3. RESULT

In this part, the authors would like to discuss about critical path with

PDM, so that the expected time can be in accordance with the planning of the 60 meters commercial ship construction

The time and cost plan data of a 60 meter commercial ship construction project was for 314 days. The data on the schedule and duration of the 60 meter commercial ship building planning project along with the time duration are presented in table 1 and the cost budget design data are listed in table 2.

 Table 1. Schedule and Duration of the 60 Meter Commercial Ship

 Construction Project

No	Activity	Duration (hari)	Start	Finish
	Hull Construction		10/10/2016	06/06/2017
1	Hull Fabrication	70	10/10/2016	15/01/2017
2	Hull Sub Assembly	104	18/10/2016	11/03/2017
3	Hull Assembly	137	26/10/2016	06/05/2017
4	Hull Erection	137	25/11/2016	06/06/2017
	Painting anode Catodic Protection		01/10/2016	22/05/2017
5	Blasting and Painting Raw Material	48	10/10/2016	15/12/2016
6	Block Blasting and Painting	137	15/11/2016	31/05/2017
7	Finishing Hull	27	06/06/2017	12/07/2017
8	Painting Outfitting	79	06/06/2017	22/09/2017
9	Anode	19	14/03/2017	07/04/2017
	Hull Outfitting		10/10/2016	05/10/2017
10	Seat and Foundation	86	10/10/2016	07/02/2017
11	Deck Machinery and Equipment	86	07/02/2017	07/06/2017
12	Interior	171	07/02/2017	05/10/2017
	Machinery Outfitting		10/10/2016	05/10/2017
13	Piping System Including Ducting	181	10/10/2016	20/06/2017
14	Shafting	51	20/06/2017	30/08/2017

No	Activity	Duration (hari)	Start	Finish
15	Machinery Outfitting	25	31/08/2017	05/10/2017
	Electric, Electronic Outfitting		10/10/2016	05/10/2017
16	Cabling	172	10/10/2016	07/06/2017
17	Power Supply	172	02/11/2016	01/07/2017
18	Illuminiation	172	26/11/2016	26/07/2017
19	Communication and Instrumentation	178	21/12/2016	18/08/2017
20	Computing and Information	172	13/01/2017	12/09/2017
21	Nautical and Radio	172	07/02/2017	05/10/2017
	Function and Commisioning		05/10/2017	30/10/2017
22	Machinery Commisioning	9	05/10/2017	18/10/2017
23	Equipment Commisioning	8	10/10/2017	21/10/2017
24	Lighting Commisioning	4	18/10/2017	24/10/2017
25	System Control Commisioning	4	24/10/2017	30/10/2017
	HAT and SAT		02/11/2017	18/12/2017
26	Harbour Acceptance Test	31	02/11/2017	16/12/2017
27	Yard Trial	14	27/11/2017	18/12/2017
	Delivery		20/12/2017	20/12/2017
28	Delivery to Customer	0	20/12/2017	20/12/2017

Table. 2 Budget Plan

No		Job Description		Cost		
No.		(Thousands Rupiah)				
Α	Hull	Construction				
	1	Hull Fabrication	Rp	46.176.942		
	2	Hull Sub Assembly	Rp	6.244.996		
	3	Hull Assembly	Rp	8.286.629		
	4 Hull Erection		Rp	8.286.629		
В	Pain	ting anode Catodic Protection				
	5	Blasting and Painting Raw Material	Rp	3.242.594		
	6 Block Blasting and Painting		Rp	2.522.018		
	7	Finishing Hull	Rp	1.621.297		

Vol. 10, Issue 2 (19)/2019

No.	Job Description (Thousands Rupiah)			Cost	
	0		n	4 7 42 705	
	8	Painting Outfitting	Rp	4.743.795	
	9	Anode	Rp	1.140.913	
С	Hull Outfitting				
	10	Seat and Foundation	Rp	5.224.179	
	11	Deck Machinery and Equipment	Rp	5.224.179	
	12	Interior	Rp	10.388.311	
D	Mac	chinery Outfitting			
	13	Piping System Including Ducting	Rp	10.928.743	
	14	Shafting	Rp	3.122.498	
	15	Machinery Outfitting	Rp	1.561.249	
Е	Elec	etric, Electronic Outfitting			
	16	Cabling	Rp	4.203.363	
	17	Power Supply	Rp	4.563.651	
	18	Illuminiation	Rp	4.383.507	
	19	Communication and Instrumentation	Rp	4.743.795	
	20	Computing and Information	Rp	4.803.843	
	21	Nautical and Radio	Rp	3.963.171	
E	Fun	ction and Commisioning			
	22	Machinery Commisioning	Rp	600.480	
	23	Equipment Commisioning	Rp	540.432	
	24	Lighting Commisioning	Rp	120.096	
	25	System Control Commisioning	Rp	420.336	
F	HA	<u>F and SAT</u>			
	26	Harbour Acceptance Test	Rp	1.921.537	
	27	Yard Trial	Rp	900.721	
G	Deli	very			
	28	Delivery to Customer	Rp	120.096	
	TO	TAL	Rp	150.000.000	

3.1. Gantt Chart Planning Data for 60 Meter Commercial Ship Construction Project

Making a planning schedule for a 60 meter commercial ship construction project used the Gantt Chart to determine when the activities / activities were started, postponed and completed.

The plan schedule of a 60 meter commercial ship construction project can be seen in the following figure below:

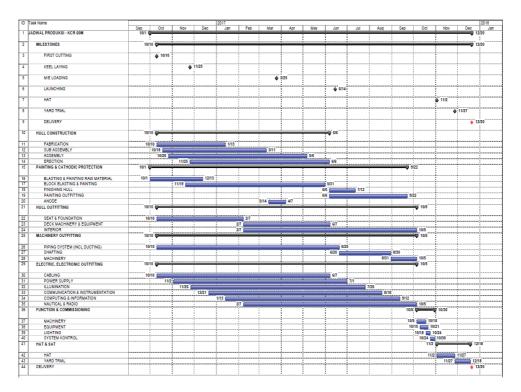


Fig. 5 Gantt Chart Planning Data for 60 Meter Commercial Ship Construction Project

4. DISCUSSION

In this study, the PDM method used one determinant number and four constraints. The four constraints in the Precedence Diagram Method (PDM) are important components in the formation of its network. In addition, the four constraints give different forms by placing activity information in the display of precedent diagrams as nodes.

The results of the construction data determination on the 60 meter commercial ship construction project can be seen in the following table:

134

Vol. 10, Issue 2 (19)/2019

Table 3. Determination the Construction of the 60 Meter CommercialShip Construction Project

No	Kegiatan	Konstrain
1	Hull Fabrication	-
2	Hull Sub Assembly	SS(1-2) = 6
3	Hull Assembly	SS(2-3) = 6
4	Hull Erection	SS(3-4) = 22
5	Blasting and Painting Raw Material	-
6	Block Blasting and Painting	SS(5-6) = 30
7	Finishing Hull	FS(9-7) = 42
		FS(3-7) = 22
		FS(4-7) = 0
		FS(6-7) = 4
8	Painting Outfitting	FS(4-8) = 0
		FS(6-8) = 4
9	Anode	FS(2-9) = 2
10	Seat and Foundation	-
11	Deck Machinery and Equipment	FS(10-11) = 0
12	Interior	FS(10-12) = 0
13	Piping System Including Ducting	-
14	Shafting	FS(11-14) = 9
		FS(13-14) = 0
15	Machinery Outfitting	FS(7-15) = 37
		SS(8-15) = 63
		FS(14-15) =1
16	Cabling	-
17	Power Supply	SS(16-17) = 17
18	Illuminiation	SS(16-18) = 35
19	Communication and Instrumentation	SS(16-19) = 52
20	Computing and Information	SS(16-20) = 70
21	Nautical and Radio	SS(16-21) = 86
22	Machinery Commisioning	FS(12-22) = 0
		FS(15-22) = 0
23	Equipment Commisioning	FS(16-23) =89
		FS(17-23) = 72

No	Kegiatan	Konstrain
		FS(18-23) = 54
		FS(19-23) = 31
		FS(20-23) = 20
		FS(21-23) = 4
24	Lighting Commisioning	SS(23-24) = 6
25	System Control Commisioning	FS(24-25) = 0
26	Harbour Acceptance Test	FS(22-26) = 11
		FS(23-26) = 9
		FS(25-26) = 3
27	Yard Trial	SS(26-27) = 18
28	Delivery to Customer	FS(27-28) = 2

Table. 4 Table of Activities for Construction of a 60 Meter Commercial

 Ship Constraction Project

No	Job Description	Activity Code	Initial Activity	Duration (hari)
	Hull Construction			
1	Hull Fabrication	1	-	70
2	Hull Sub Assembly	2	1	104
3	Hull Assembly	3	2	137
4	Hull Erection	4	3	137
	Painting anode Catodic Protection			
5	Blasting and Painting Raw Material	5	-	48
6	Block Blasting and Painting	6	5	137
7	Finishing Hull	7	3, 4, 6, 9	27
8	Painting Outfitting	8	4, 6	79
9	Anodizing	9	2	19
	Hull Outfitting			
10	Seat and Foundation	10	-	86
11	Deck Machinery and Equipment	11	10	86
12	Interior	12	10	171
	Machinery Outfitting			
13	Piping System Including Ducting	13	-	181
14	Shafting	14	11, 13	51

Vol. 10, Issue 2 (19)/2019

No	Job Description	Activity Code	Initial Activity	Duration (hari)
15	Machinery Outfitting	15	7.8.14	25
	Electric, Electronic Outfitting			
16	Cabling	16	-	172
17	Power Supply	17	16	172
18	Illuminiation	18	16	172
19	Communication and Instrumentation	19	16	178
20	Computing and Information	20	16	172
21	Nautical and Radio	21	16	172
	Function and Commisioning			
22	Machinery Commisioning	22	12, 15	9
23	Equipment Commisioning	23	16,17,18,19,20,21	8
24	Lighting Commisioning	24	23	4
25	System Control Commisioning	25	24	4
	HAT and SAT			
26	Harbour Acceptance Test	26	22, 23, 25	31
27	Yard Trial	27	26	14
	Delivery			
28	Delivery to Customer	28	27	0

Based on the series of project activities in the table above with the addition of constrains provisions in table 4, they were then described in the form of a networking planning diagram using activity signs in the activity on node (AON) model as shown below:

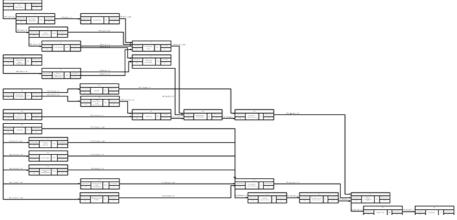


Fig. 6 Activity On Node of 60 Meter Commercial Ship Constraction Project

After the Time Schedule was known, the next step was the researcher to perform the PDM calculation to find out the project completion time. The PDM it consists of two stages, namely forward pass and backward pass.

1. Forward Pass o Activity 1 ES(1) = 0EF(1) = 0 + 70 = 70o Activity 2 ES(2) = 0 + 6 = 6EF(2) = 6 + 104 = 110o Activity 3 ES(3) = 6 + 6 = 12EF(3) = 12 + 137 = 149o Activity 4 ES(4) = 12 + 22 = 34EF(4) = 34 + 137 = 171o Activity 5 ES(5) = 0EF(5) = 0 + 48 = 48o Activity 6 ES = 0 + 30 = 30EF = 30 + 137 = 167o Activity 7 ES(7) = 130 + 42 = 172= 149 + 22 = 171= 171 + 0 = 171= 167 + 4 = 171EF(7) = 172 + 27 = 199o Activity 8 ES (8) = 171+0 = 171 = 167 + 4 = 170EF(8) = 171 + 79 = 250o Activity 9 ES(9) = 110 + 2 = 112

EF(9) = 112 + 18 = 130o Activity 10 ES(10) = 0EF(10) = 0 + 86 = 86o Activity 11 ES(11) = 87 + 0 = 86EF(11) = 86 + 86 = 172o Activity 12 ES(12) = 86 + 0 = 86EF(12) = 86 + 171 = 257o Activity 13 ES(13) = 0EF(13) = 0 + 181 = 181o Activity 14 ES(14) = 172 + 9 = 181= 181 + 0 = 181EF(14) = 181 + 51 = 232o Activity 15 ES(15) = 199 + 36 = 235= 171 + 62 = 233= 232 + 1 = 233EF(15) = 235 + 25 = 260o Activity 16 ES(16) = 0EF(16) = 0 + 172 = 172o Activity 17 ES(17) = 0 + 17 = 17EF(17) = 17 + 172 = 189o Activity 18 ES(18) = 0 + 35 = 35EF(18) = 35 + 172 = 207o Activity 19 ES(19) = 0 + 52 = 52EF(19) = 52 + 178 = 230o Activity 20 ES (20 = 0 + 70 = 70)EF(20) = 70 + 172 = 242

Vol. 10, Issue 2 (19)/2019

o Activity 21 ES(21) = 0 + 86 = 86EF(21) = 86 + 172 = 258o Kegiatan 22 ES(22) = 257 + 0 = 257= 260 + 0 = 260EF(22) = 260 + 9 = 269o Activity 23 ES (23) = 172 + 89 = 261 = 189 + 72 = 261= 207 + 54 = 261= 230 + 31 = 261= 242 + 20 = 262= 258 + 3 = 261EF(23) = 262 + 9 = 271o Activity 24 ES(24) = 262 + 6 = 268EF(24) = 268 + 4 = 272o Activity 25 ES(25) = 272 + 0 = 272EF(25) = 272 + 4 = 276o Activity 26 ES (26) = 269 + 11 = 280 = 269 + 9 = 278= 275 + 3 = 279EF (26) = 280 + 31 = 311 o Activity 27 ES(27) = 280 + 18 = 298EF(27) = 298 + 14 = 312o Activity 28 ES(28) = 312 + 2 = 314EF(28) = 314 + 0 = 3142. Backward Pass. o Activity 28 LF(28) = 314LS (28) = 314 - 0 = 314o Activity 27 LF (27) = 314 - 2 = 312LS(27) = 312 - 14 = 298

o Activity 26 LF(26) = 298 - 18 + 31 = 311LS (26) = 311 - 31 = 280 o Activity 25 LF(25) = 280 - 3 = 277LS(25) = 277 - 4 = 273o Activity 24 LF(24) = 273 - 0 = 273LS (24) = 273 - 4 = 269o Activity 23 LF (23) = 269 - 6 + 8 = 271= 280 - 9 = 271LS (23) = 271 - 9 = 262o Activity 22 LF(22) = 280 - 11 = 269LS (22) = 269 - 9 = 260o Activity 21 LF (21) = 262 - 3 = 259LS(21) = 259 - 172 = 87o Activity 20 LF (20) = 262 - 20 = 242LS (20) = 242 - 172 = 70o Activity 19 LF(19) = 262 - 31 = 231LS (19) = 231 - 178 = 53o Activity 18 LF (18) = 262 - 54 = 208LS (18) = 208 - 173 = 36o Activity 17 LF(17) = 262 - 72 = 190LS (17) = 190 - 172 = 18o Activity 16 LF(16) = 262 - 89 = 172LS(16) = 173 - 172 = 1= 18 - 17 = 1= 36 - 35 = 1= 53 - 52 = 1= 70 - 70 = 0= 87 - 86 = 1

0	Activity 15
	LF(15) = 260 - 0 = 260
	LS(15) = 260 - 25 = 235
0	Activity 14
	LF(14) = 235 - 1 = 234
	LS (14) = $234 - 51 = 183$
0	Activity 13
	LF(13) = 183 - 0 = 183
	LS (13) = 183 - 182 = 1
0	Activity 12
	LF(12) = 260 - 0 = 260
	LS(12) = 260 - 171 = 89
0	Activity 11
	LF(11) = 183 - 9 = 174
	LS(11) = 174 - 87 = 86
0	Activity 10
	LF(10) = 87 - 0 = 87
	= 89 - 0 = 89
	LS (10) = $87 - 86 = 1$
0	Activity 9
	LF (9) = 172 - 42 = 130
	LS (9) = 130 - 18 = 112
0	Activity 8
	LF(8) = 235 - 62 + 79 = 252
	LS (8) = 252 - 79 = 173

o Activity 7 LF (7) = 235 - 36 = 199 LS (7) = 199 - 27 = 172 o Activity 6 LF (6) = 172 - 4 = 168 = 173 - 4 = 169LS (6) = 168 - 137 = 31 o Activity 5 LF (5) = 31 - 30 + 54 = 55LS (5) = 55 - 54 = 0o Activity 4 LF(4) = 173 - 0 = 173= 172 - 0 = 172LS(4) = 172 - 138 = 34o Activity 3 LF (3) = 172 - 22 = 150 = 34 - 22 + 137 = 149LS(3) = 149 - 137 = 12o Activity 2 LF (2) = 112 - 2 = 110 = 12 - 6 + 104 = 110LS(2) = 110 - 104 = 6o Activity 1 LF(1) = 6 - 6 + 70 = 70LS (1) = 70 - 70 = 0

Table 5. Recapitulation of ES, EF, SL, LS and LF Value Calculation of the 60 Meter Commercial Ship Construction Project

Activity Code	Duration (Hari)	ES	EF	SL	LS	LF
1	70	0	70	0	0	70
2	104	6	120	0	6	120
3	137	12	149	0	12	149
4	137	34	173	0	34	173
5	48	0	48	0	0	48

Vol. 10, Issue 2 (19)/2019

Activity Code	Duration (Hari)	ES	EF	SL	LS	LF
6	137	30	167	1	31	168
7	27	172	199	0	172	199
8	79	171	250	2	173	252
9	19	112	130	0	112	130
10	86	0	86	1	1	87
11	86	86	172	1	87	173
12	171	86	257	1	87	258
13	181	0	181	1	1	183
14	51	181	232	2	183	234
15	25	235	260	0	235	260
16	172	0	172	0	0	172
17	172	17	189	1	18	190
18	172	35	207	1	36	208
19	178	52	230	1	53	231
20	172	70	242	0	70	242
21	172	86	258	1	87	259
22	9	260	269	0	260	269
23	8	262	271	0	262	271
24	4	268	272	1	269	273
25	4	272	276	1	273	277
26	31	280	311	0	280	311
27	14	298	312	0	298	312
28	0	314	314	0	314	314

Based on Table 5, the critical path from the PDM calculation was obtained. The critical path is the path through which critical work passes, namely the work that has the earliest start time equals with the last start time (ES = LS) and the earliest completion time equals with the latest finish time (EF = LF). The critical path on PDM can be seen in the following figure:

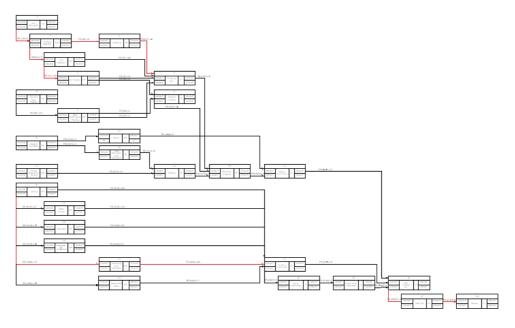


Fig. 7 PDM critical track on the 60 Meter Commercial Ship Construction Project

5. CONCLUSION

Based on the calculations obtained, activity 1, 2, 3, 4, 5, 7, 9, 15, 16, 20, 22, 23, 26, 27, 28 are critical paths. Thus, control and supervision is more stringent in carrying out the activities of the 60 meter commercial ship building project activities than the contractor on each activity to avoid delays so that the project can be completed on time.

ACKNOWLEDGEMENTS

This research has been Supported by Indonesia Naval Technology College (STTAL).

REFERENCES

[1] Agarwal, R. (2013). *Critical Path Method in Designing Feasible Solutions*. International Journal of Scientific Research and Reviews, 190-202.

[2] Agyei, W. (2015). Project Planning And Scheduling Using

Vol. 10, Issue 2 (19)/2019

PERT And CPM Techniques With Linear Programming: Case Study. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 222-227.

[3] Alecu, F. (2014). *Cost Control and Performance Review of Software Projects by Using the Earned Value Management.* Oeconomics of Knowledge, 2-6.

[4] Andawei, M.-E. M. (2014). Extension of Time Determination in Construction Projects in Nigeria: The Critical Path Method. The International Journal Of Engineering And Science (IJES), 48-51.

[5] Arica Dwi Susanto, A. A. (2018). *The Optimization of Multipurpose Building Development on Project Scheduling Using Precedence Diagram Method (PDM)*. ASRO JOURNAL-STTAL, 9 (1), 1-7.

[6] Balla, G. T. (1995). *Critical* path analysis for the management of fractured neck of femur. AUSTRALIAN JOURNAL OF PUBLIC HEALTH , 155-159.

[7] Czarnigowska, A. (2008). *Earned value method as a tool for project control.* Budownictwo i Architektura 3, 15-32.

[8] Daniel Castro-Lacouture, A. G.-J. (2009). *Contruction Project Scheduling with Time, Cost and Material Restrictions Using Fuzzy Mathematical Models and Critical Path Method.* JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 1096-1104. [9] Dwaikat, L. N. (2016). Measuring the Actual Energy Cost Performance of Green Buildings: A Test of the Earned Value Management Approach. Energies journal, 1-20.

[10] Fatemeh Nouban, N. G. (2017). *The Factors Affecting The Methods of Construction Projects Scheduling: An State of The Art and Overview*. Asian Journal of Natural & Applied Sciences, 6 (4), 114-122.

[11] Ikhtisholiyah. (2017). Analysis of the application of time and cost management on the construction project of electric engineering building of polytechnic industry of madura (poltera). Zeta-Math Journal, 14-21.

[12] K.K.Khandelwal, D. B. (2002). *PROJECT PLANNING AND CONTROL WITH PERT AND CPM*. New Delhi: LAXMI PUBLICATIONS (P) LTD.

[13] Kim, S.-G. (2012). *CPM* Schedule Summarizing Function of the Beeline Diagram Method. Journal of Asian Architecture and Building Engineering, 367-374.

[14] M, S. (2015). Traditional Critical Path Method versus Critical Chain Project Management: A Comparative View. International Journal of Economics & Management Sciences , 1-6.

[15] M. Hayuningtyas, T. D. (2018). System analysis for technology transfer readiness assessment of horticultural postharvest. International Conference on

Industrial and System Engineering (IConISE) (hal. 1-7). Bogor: IOP Publishing.

[16] Mazlum, M. (2015). *CPM*, *PERT and Project Management With Fuzzy Logic Technique and Implementation On A Business*. 4th International Conference on Leadership, Technology, Innovation and Business Management (hal. 348-357). Istanbul: Elsevier Ltd.

[17] Muhammad Kholil, B. N. (2018). Scheduling of House Development Projects with CPM and PERT Method for Time Efficiency (Case Study: House Type 36). IOP Conf. Series: Earth and Environmental Science (hal. 1-8). jakarta: IOP Publishing.

[18] Nafkha, R. (2016). *THE CRITICAL PATH METHOD IN ES-TIMATING PROJECT DURATION*. Information Systems in Management, 78-87.

[19] R.Lin, H. J. (2009). A fuzzy pert approach to evaluate plant construction project scheduling risk under uncertain resources capacity. Journal of Industrial Engineering and Management, 31-47.

[20] Shailla. (2014). Comparative Study of Management Operation System Techniques (MOST) and CPM in Construction Scheduling. International Journal of Engineering Trends and Technology (IJETT), 371-379.

[21] Shan, Y. (2014). Integration of Building Information Modeling and Critical Path Method Schedules to Simulate the Impact of Temperature and Humidity at the Project Level. Buildings journal, 295-319.

[22] Silvianita, R. F. (2018). *Fast Missile Boat Project Planning using CPM and What If Analysis Method.* IOP Conf. Series: Earth and Environmental Science (hal. 1-6). Jakarta: IOP Publishing.

[23] Wilson, B. (2013). *Earned Value Management Systems: Challenges and Future Direction.* Journal of Integrated Enterprise Systems, 9-17.

[24] Wong, Y. (1964). *Critical Path Analysis for New Product Planning*. Journal of Marketing , 53-59.

[25] Y. Arslan, H. B. (2017). *Planning and Monitoring of industrial punch development processes.* Journal of Engineering Research and Applied Science, 615-622.

144